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Abstract

Two mathematial models for describing the effective stiffness and the equivalent viscous damping ratio of wire rope springs, as amplitude
dependent, were developed. Twenty-four springs were tested in free vibration and the displacement decays were recorded. The free vibration
time history was used to calculate the effective stiffness and qb&abent viscous damping ratio. For each displacement amplitude, the
effective stiffness was determined from the observed period of vibration. The equivalent viscous damping ratio was determined from the
logarithmic decrement of the velocity between the points of zero potential energy. The proposed models are semi-empirical in nature and
require no testing since all parameters are fully determined from the physical properties of springs.
© 2005 Elsevier Ltd. All rights reserved.

Keywords: Damping; Energy dissipation; ExperimehtFriction; Modeling; Non-linear; Sfifiess; System ideification; Wire rope

1. Introduction designer to decide on the spring dimensions before testing.
Usually, a number of different springs are selected for
Tunad mass dampers are auxiliary systems incorporated testing before one specificmuofiguration is chosen. Such
into structures to reduce their resonant response underexploration procedures do not allow fine-tuning of the spring
dynamic forces. A tuned mass damper consists of a mass, alynamic characteristics to the requirements of the particular
spring and a damper. The spring and the damper componentsapplication at hand. Moreover, the available models, to be
can be implemented in a number of ways. Possessing elastiéncorporated in the analysis of structural systems, require
and energy dissipation characteristics, the wire rope springincremental non-linear time domain analysis.
combines the spring and the damper actions in one device. [inearisation often results an accurate representation
Both the stiffness and the damping of the wire rope spring of the characteristics of many non-linear dynamic systems.
can be adjusted by varying wire rope diameter, wire rope The non-linear stiffness of the wire rope spring can be
structue, wire material, coil diameter, number of coils approximated by an effective spring constant that maintains
and/or spring orientation. the same natural frequency at a certain displacement
While significant @vances have been made in the amplitude. The complicated ergy dissipation mechanism
moddling of wire rope springs, experimental work is can be represented by an equivalent viscous damping
still needed to calibrate the available modelts-13. mechanism that, for a given amplitude, dissipates the same
Therefore, considerablexperience is necessary for the amount of energy.
This paper describes a large set of dynamic tests
* Corresponding address: Nabih ¥mé & Associates Structural  that were conducted to quantify the amplitude-dependent
Engineers, 800 Wilshire Boulevard, Suite 200, Los Angeles, CA, USA. Tel.: effective stiffness and equiva|ent viscous damp|ng ratio
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of the wire rope springs in the tension—compression
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tested in free vibration anthe displacement decays were < Shear ‘ De+dr
recorded. For each recorded displacement amplitude, the
effective stiffness was determined from the observed period Roll

of vibration. The equivalent viscous damping ratio was
determined from théogarithmic decrement of the velocity
between the points of zero potential energy.

Two mathematial models that describe the effective
stiffness and the equivalentiscous damping ratio, as
amplitude-dependent quantities, were developed. For each
wire rope spring, the effective stiffness values were
normalised by their minimurwalue and the displacement
amplitude values were normalised by the amplitude Top View Section A-A
value oorresponding to the minimum effective stiffness.
The normalisation process resulted in similar trends
for the stiffness—amplitude and the damping—amplitude
relationships for all the springs tested. The minimum
effective stiffness was related to the stiffness of a ring beam
subjected to a point load and tkerresponding displacement
amplitude was related to the dimensions of the wire rope
spring. The normalised effective stiffness was fitted with
two polynomials, which are functions of the normalised
displacement amplitude. Ohe basis of an understanding
of the actual energy dissipation mechanism, the equivalent
viscous damping ratio was alslegribed as a function of
the normalised displacement amplitude.

Tension-Compression

.| |

(De+dy /2 . Roll

()
i

Fig. 1. A Schematic drawing of a wire rope spring.

Fig. 2. A photograph of some of the wire rope springs tested.

W

2. Experimental study
2.1. Wirerope springs

Twenty-four wire rope springs were fabricated for the
intended gperimental study.Fig. 1 shows a schematic
drawing of a wire rope spring. The wire rope diametgr,
and the coil diamete), were \aried as listed inmable 1
The wire rope structure is & 19 with an independent wire
rope core (IWRC) for diameters 25.40 and 12.70 mm and
is 7 x 19 with a wire strand core (WSC) for diameters
7.938, 6.350 and 3.175 mm. To compare with other wire
rope structures, one spring was made ofa 7 WSC wire
rope of 1.587 mm diameter. The rafi®./d, was dhosen to
be in the range of 10-25 (with one exception of 33) as listed
in Table 1 The spmg was intended to be two half-circles on
both sides of the aluminium réteers. However, after being
fabricated, it took a near elliptical shape with the major axis,
Dc1, as thedistance between the twetaners and the minor
axis, D¢, perpadicular to the reiners (se€fable 9. D¢
wascalculated as the average B§; and Dcp. Fig. 2 shows
some of tke springs used in this study.

2.2. Test set-up and procedures

Each wire rope spring was placed between a moving
pendulum and a reaction column as showrFig. 3. The Fig. 3. A photograph of the pendulum set-up.
pendulum was pushed manually for several cycles to build
up motion and then was released to vibrate freely. The were recorded. A typical filtered displacement, time
displacementsx, at the wirerope spring attachment point history is shown irFig. 4.
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Table 1
Dimensions and properties of wire rope springs
# dy Dey Dy De1/Dey Dc De/dy kS / kmin kPs /kmin /S / min xpin
(mm) (mm) (mm) ratio (mm) ratio ratio ratio ratio cal /test
1 2540 664 613 1.08 639 25.14 135 9.7 093 0.95
2 2540 422 403 1.05 413 1624 140 10.0 0.96 0.84
3 2540 322 286 1.13 304 1197 170 122 1.18 093
4 12.70 329 314 1.05 322 2532 133 93 092 1.07
5 12.70 285 273 1.04 279 2197 149 103 1.03 1.00
6 12.70 246 239 1.03 243 19.10 159 11.0 1.10 1.01
7 12.70 220 211 1.04 216 1697 158 11.0 1.10 1.07
8 12.70 197 184 1.07 191 15.00 172 120 1.19 0.96
9 12.70 173 163 1.06 168 13.23 170 118 1.18 1.00
10 12.70 157 143 1.10 150 1181 157 109 1.13 1.04
11 12.70 163 140 1.16 152 11.97 131 9.1 0.98 1.09
12 12.70 160 140 1.14 150 1181 143 99 1.03 1.07
13 12.70 154 144 1.07 149 11.73 174 12.1 120 093
14 12.70 138 128 1.08 133 1047 164 114 1.13 0.88
15 7938 155 145 1.07 150 18.90 118 9 092 1.03
16 7938 154 145 1.07 150 18 .90 114 8.6 0.88 094
17 7938 157 142 1.11 150 18.90 118 89 091 1.08
18 6.350 163 156 1.05 160 25.12 119 9.0 0.90 1.00
19 6.350 112 109 1.03 111 1740 141 10.7 1.07 1.01
20 6.350 62 60 1.03 61 961 135 10.2 1.02 0.96
21 3.175 83 79 1.05 81 2551 138 104 1.02 1.20
22 3.175 56 55 1.02 56 1748 134 102 1.00 1.15
23 3.175 32 31 1.03 32 992 141 10.6 1.04 0.90
242 1.587 53 51 1.05 52 33 61 10.1 0.69 143

Shaded rows represent springs used for verification of mathematical models.
a Wire rope structure 7 x 7.

2.3. Pendulumrotational stiffness

& —forced
40} e The rotational stiffness of the pendulukf,, for small
; rotations, is
20 P
= Kp = Mpagz 1)
;Ej ) wherem,, is the mass of the pendulunag is the acceleration
20 due to gravity and is the distance between the pivot and the
pendulum centre of mass. The spring stiffness to pendulum
40| stiffness ratio was chosen to maintain a balance between
Y two sources of error. These were errors associated with the
s 10 20 30 40 50 60 70 calculation of the wire rope spring stiffness and errors due
'3 t(s) I to interpolation of stiffness and damping between recorded
L — amplitudes.
40 —fit
20} Xr 3. Analysisprocedures
£o % o
¥ T 3.1. Representative amplitude, X,
-20 X
i Since the force—displacemerelationship is asymmetri-
-4 . : cal as shown irFig. 5, thefree vibration tesion anplitude,
T Xt, and compession amplitudeXc, differ considerably
-60 sy . . i
1.4 135 within the same vibration cycle as shownkhig. 4. A rep-
t(s) resentative amplitudex,, waschosen as

Fig. 4. A typical displacement time history. X; = /XT Xc. (2)
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Force (N)

Displacement (mm)

Fig. 5. A typical force—displacement for the

tension—compression mode of deformation.

relationship

3.2. Amplitude-dependent effective stiffness, kyy

The damped periods of the vibratiofp, wereobtained
from the free vibratia time history (seeFig.4). The
effective stiffness, kyy, corresponding to a particular
representative displacement amplitude, was detemined

to produce the same natural frequency as the non-linear? (@ =0
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damping to use since the govarg differential equation of
motion is linear. The commonest method for defining the
equivalentviscous damping is equating the energy dissipated
over a vibraion cycle by the actualamping mechanism to
that disgpated by a viscous damping mechanig]

The energy dissipated in a free vibration cycle by a
rotational SDOF with viscous damping is given by

spring. This equivalence criterion was adopted because gnd

the ratural frequency of the tuned mass damper strongly
influences its effectiveness.
The calculation procedures, for eaxh, are adollows:

1. The circular natural damped frequency of the rotational
single-degree-of-freedom, SDOF, system is given by
21
= —. 3
@D = - (3)
2. The total rotational stiffness of the SDOF system is given
by
2
ws |
k@ — D'P (4)
T a-p?
wherel is the mass moment of inertia of the pendulum
about the pivot ang is the equivalenviscous damping
ratio of the SDOF system evaluated in the next section
3. The spring rotational stiffness is given by
ke =k =K (5)
4. The tension—compression stiffness per coil of the wire
rope spring is given by
Kl
kwr = —= 6

wheren, is the number of coils.

3.3. Amplitude-dependent equivalent viscous damping
ratio, Bwr

Damping in structures is usually represented by an
equivalent viscous damping. It is the simplest form of

2
EN =21 pwnp f P én2dt )
0
where the rotation is described by
O(t) = exp(—Bwnt) (Cel cos<a)m/l - ,32t>
+Cyosin <a)m/l— ,32t)> (8)
and the rotational velocity is
) de(t)
o) = ——= 9
) @ (9)
The initial conditions are defined as
(10a)
6(0) = 6o. (10b)

The initial conditions are used to determine the constants
Co1 and Cy2 in Eg. B). An expression for the dissipated
energy per cycle in free vibration for a viscously damped
SDOF was obtaied by performinghe inegral in Eq. )

and is given by

1 .5 —4np
Regardlesof the actual damping mechanism, the energy

dissipation between points of zero potential energy can be
expressed in terms of the change in the kinetic energy as

15 (63 - 62).

By equating Eg/ to Eé, an epression for the equivalent
viscous damping ratio is obtained as

fv

Ep = (11)

f 1

2

E (12)

p= s (13a)
1+ (z)

where

_in(%

§=1In (91) . (13b)

For a spring, which has a hysteretic force—displacement
relationship, zero displacemiecorresponds to a value for
the force (sed-ig. 5 and theefore there is some potential
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energy stored in the spring. The zero-potential-energy 4. Experimental resultsand modelling
condition is satisfied only at points of zero acceleration. The
displacement time history wasumerically differentiated
twice to determine points of zero acceleration. Velocities
corresponding to zero acceleratiofis and 6, were used ~ 4.1.1. Typical stiffness-amplitude relationship

in Eq. (13) to obtain the equivalent viscous damping ratio. A typical effective stiffness based on full vibration cycles
Since the pendulum motion was recorded in terms of versus the re@sentative amplitude;, is shown inFig. 6.
displacement at the spring level, the rotational veloéit§or It also shows the effective stiffness based on tension and
small rofations, can be related to the translational velogity, = compression half-cycles. For the stiffness based on full
by cycles, it decreases rapidly with the increaseXef up to

a certain point where it reaches its minimum valk&i"

at amplitudeX™", after whichky, slightly increases with

the increase ofX;. The rid decrease ok, with X;

The only component that dissipates a significant amount increase could be attributed to the increase of slip between
of energy in the rotationeSDOF system is the wire rope individual wires, therefore reducing the wire rope’s effective
spring. The equivalent viscous damping ratio, calculated moment of inertia. In the small amplitude range, the non-
according to the above-mentioned procedures, should belinear geometric effects do not play a noticeable role and
corrected for the ratio of the total system stiffness to the hence the effective stiffnesses based on full cycles, tension
spring stiffness. The energy dissipated by a rotational SDOF half-cycles and compression half-cycles are all equal. This
system with viscouslamping in one cycle of harmonic agrees with the recorded symmetric hysteresis loops under

4.1. Effective stiffness, kyr

12

0| X

6 (14)

vibration is

w
EDY = 278 nk? 6? (15)

(6]

wherew is the frequency of response ari@lis the amplitude

small amplitudes (seEig. 5. As the anplitude increases,
stiffening takes place on the tension side while softening is
experienced on the compression side. The full cycle effective
stiffness epresents the average.

of rotation. Since the response of a system is most sensitive4.1.2. Minimum effective stiffness, kMin and corresponding
to damping when vibrating at its natural frequency, the amplitude, X"

damping equivalence point is always chosewat wp. If
the stiffness is providednly by the wire rope spring?,,

The minimum value for the effective stiffness based on
the full vibration cycle k™", and the corresponding repre-

then the corresponding equivalent viscous damping ratio, sentative mplitude, X™", wereobtained from experimental

Bur, IS given by
k0
Bur = @}ﬁ. (16)

3.4. Dynamic properties based on the half-cycle

Considering tensin and compression separately, the

half-cycle period isTpt or Tpc and the corresponding
amplitude isXt or Xc, resgectively, as shown ifrig. 4. The

velocities 6p andé; are calculated for the half-cycle under
consideration. To carry out the analysis for the half-cycles,

Eq. 3) is replaced by
27

= 17a
@D = 5 (17a)
for the tension half-cycle or
2
_ 17b
@D = 5 (17b)

for the compression half-cycle. Also, EqL3b) should be
replaced by

8:2Ioge(%>.
1

(18)

results for d the 24 springs and are listed irable 1

On the basis of the engrgmethod and considering
only the bending deformations, an expression for the
tenson—compression stiffness of a ring beam subject to a
point load was obtained a%4]

E lxx 8

~ D3
P (5-2)

where lyx is the aoss section moment of inertia about the
axis of bending anc is the modulus of elasticity. Three
different values were assigned tgy, bagd on: a no-slip
condition; partial slip between strands but no-slip between
individual wires within the same strand; and a full slip
condition. The corresponding stiffness values weéke kPS
and k'S, resgectively. k™, kPS and ks were normalised by
k™" and are given iffable 1 The raiosk'™/k™" for springs
1-23 are all in the near vicinity of unity which suggests that
k™Mn can be accurately predicted using Ef9)(with a full
slip condition considered in calculatirg.

To predict the representative displacement amplitude
corresponding t&™", an empiical expressin inthe form

1.24

. DC
X'[mn == OOSBW

Ky (19)

(20)

best fits the experimentally obtained™" values (see
Table J).
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Fig. 6. A typical normalised effese giffness versus normalised
displacement amplitude.

2.0

+ 7x19 spring (17 for development)
—— general expression
1.8

+ 7x19 springs (6 for verification)
= 7x7 spring (1 for verification)
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Fig. 7. Normalised effective stiffness versus normalised displacement
amplitude for all springs.

4.1.3. General expression for the amplitude-dependent
effective stiffness, kyr (X )

For each spring, the effective stiffness valukg;, and
the representative amplitude valugs, werenormalised by
k™" and X", resgectively. The normalisation process was
repeated for the 24 springs and normalised values are plotte
in Fig. 7. A general expression for the amplitude-dependent
effective stiffness was obtained, through fitting, as
Xy >4>

~ ymin
X{

ko (Xp) = K™Min (1 +0.95 (1

for X, < Xxmn (21a)
and
‘ X, 15
kor (X¢) = kM (1+ 0.14()(Fnin - 1) )
for X, > XM (21b)

and is plotted irFig. 7.

(Lwr (Xr) Xy = Ff +
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0.7

o full vibration cycle

o6 — fit o
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Fig. 8. A typical normalised energy dissipation versus normalised
displacement amplitude.

4.2. Equivalent viscous damping ratio, Bur

4.2.1. Damping mechanisms

To idenrtify the energy dissipation mechanism, a typical
energy dissipation/amplitude relationship is plotteHig. 8.
The energy dissipated is normalised by the maximum strain
energy that can be stored in the wire rope spring, which
is

1 . )

max _ — min min
ET™ =~ {kwr (2xr )} 2xmin, (22)
The relationship between the energy dissipation and the
amplitude suggested a fit in the form

f
Ep = Cep1Xr + Cep2 X2, (23)

which representshe combination of two mechanisms. The

term proportional to the amplitude represents a friction

damping mechdam as shown inFig. ¥a). The term

proportional to the amplitudegsiared represents a rate-

independent linear dampin@4,16] in which the danping

force is proportional to displacement as showrrig. Y(b).

n is a dimensionless damping constant. A condition for

achieving slip is

7 nkwr Xy
2

and was considered in fitting the dissipated energy with
Eq. 23).

(24)

4.2.2. General expression for the amplitude-dependent
damping ratio, B (Xr)

The equivalent viscous damping ratio valueSy,
were plotted versus the normalised displacement amplitude
values, X;/X™n for the 24 grings and are shown in
Fig. 10. The reldionship between the viscous damping ratio
equivalent to the combined damping mechanism and the
amplitude needs to be described. When the energy dissipated
by a viscous damping mechanism under harmonic excitation
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* A | » Disp. )thf’ Disp.
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A < Y
e X > % > ke x

(a) Friction damping mechanism. (b) Linear damping mechanism.

Fig. 9. Combined damping mechanism of wire rope springs.

70

The spring made of wire rope structurex77 is shown to

7x19 springs (17 for development)

60 —— general expression match the trend of the above-mentioned data Esge 7and
7x18 springs (6 for verification) 10). However, discrepancies are observed between measured
50 7x7 spring (1 for verification)

and predictedX™" and k™" for the 7 x 7 spring. Further
testing is required to check the applicability of the models
developed to other wire rope structures.

Byr (% critical)

5. Conclusions

The effective stiffness etreases as the vibration
%.o 02 04 06 08 10 12 14 16 18 20 amplitude increases up to its minimum value, beyond
X/ Xmin which the stiffness slightly increases with the amplitude.

The minimum stiffness value was found to be equal

Fig. ;O. Equivalent yiscous damping ratio versus normalised displacement 5 the stiffness of a ring éam having the same coil
amplitude for all springs. diameter and a cross section moment of inertia equivalent
to full slip between the wires. The displacement amplitude

corresponding to the minimum effective stiffness was

is equated toHat dissipated by both the friction and linear empirically expressed as a function of the coil diameter
damping mechanisms as and a weak function of the wire rope diameter. The
stiffness—amplitude relationship was found by fitting the

normalised data points.

The energy dissipation/amplitude relationship showed
that the damping mechanism is a combination of a friction

270 Bur ko X2 = AF ¢ Xy + 717k X2, (25)
wn

a reltionship betweeg, andX;, for w = wy, is obtained

as damping and a rate-independent linear damping. Equating
Bur (Xr) = E Ft n (26) the energy dissipated by the combined mechanism to
A 7k Xr 2 that disgpated by viscous damping, an expression for the
By fitting the expression given by ER®) and fulfilling equivalent viscous damping ratio as a function of the

the slip condition given by Eq.26), values for the non- d_isplacement am_plitudevv_as develo_ped.'!’his expression was
dimensional paramete,,—sf/(kminquin) andn are obtained fitted to thedamping-amplitude relationship.

as 0.0776 and 0.0627, respectively, and the fitted expression

is shown inFig. 10. As X, increases, the contribution of the

friction damping topwr decreases. For largé values,fur Acknowledgements

approaches a value 9f2 (seeFig. 10).
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Appendix. Notation

List of symbols

ag acceleration due to gravity

Cep12 fitting constants for amplitude-dependent dissi-
pated energy

Co12 constants in the expression for free vibration
rotaion of the SDOF system

D¢ coil diameter

dr wire rope diameter

E modulus of elasticity

Ep dissipated energy per vibration cycle

ElfD dissipated energy péree vibrdion cycle

Eg/ energy dissipated per free vibration cycle by
viscous damping

EBV energy dissipated per harmonic vibration cycle by
viscous damping

EZJ® maximum strain energy stored in the wire rope
spring

F¢ friction force

F springrestoring force

h distance between the spring/damper (or wire rope
spring) attachment point and pivot point

Ip pendulum mass moment of inertia about the pivot
point

Ixx cross section moment of inertia about the axis of
bending

kfs stiffness of the ring beam under a point load, based
ona full slip condition

kmin minimum effective stiffness of a wire rope spring

kns stiffness of the ring beam under a point load, based
onnoslip condition

kPs stiffness of the ring beam under a point load, based
ona partial slip condition

K stiffness of the ring beam under a point load

Kuwr effective stiffness of the wire rope spring

k% pendulum rotational stiffness

kf total rotational stiffness

Ko, effective wire rope spring rotational stiffness

mp pendulum mass

Ne number of coils

Tp damped natural period oflwation, based on a full
cycle

Toc half of the damped natural period of vibration,
based on a compression half-cycle

ToT half of the damped natural period of vibration,
based on a tension half-cycle

t time

Xc displacement amplitude in compression

Xy representative displacement amplitude

XT displacement amplitude in tension

XP“” representative displacement amplitude correspond-

ing to minimum wire rope spring stiffness

X displacement

B damping atio (% of critical)

Buwr equivalent damping ratio of wire rope spring (% of
critical)

n dimensionless damping constant

@) rotation amplitude

0 rotetion

w circular frequency

D natural damped circular frequency of rotational
SDOF

wn natural circular frequency

Operators

° Differential with respect to time.

Abbreviations

IWRC independent wire rope core
SDOF singé-degree of freedom
WSC  wire strand core
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