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Abstract

Two mathematical models for describing the effective stiffness and the equivalent viscous damping ratio of wire rope springs, as am
dependent, were developed. Twenty-four springs were tested in free vibration and the displacement decays were recorded. The fre
time history was used to calculate the effective stiffness and the equivalent viscous damping ratio. For each displacement amplitude,
effective stiffness was determined from the observed period of vibration. The equivalent viscous damping ratio was determined
logarithmic decrement of the velocity between the points of zero potential energy. The proposed models are semi-empirical in n
require no testing since all parameters are fully determined from the physical properties of springs.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Tuned mass dampers are auxiliary systems incorpora
into structures to reduce their resonant response un
dynamic forces. A tuned mass damper consists of a ma
spring and a damper. The spring and the damper compon
can be implemented in a number of ways. Possessing el
and energy dissipation characteristics, the wire rope sp
combines the spring and the damper actions in one dev
Both the stiffness and the damping of the wire rope spr
can be adjusted by varying wire rope diameter, wire ro
structure, wire material, coil diameter, number of coi
and/or spring orientation.

While significant advances have been made in t
modelling of wire rope springs, experimental work
still needed to calibrate the available models [1–13].
Therefore, considerable experience is necessary for th
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designer to decide on the spring dimensions before tes
Usually, a number of different springs are selected
testing before one specific configuration is chosen. Suc
exploration procedures do not allow fine-tuning of the spr
dynamic characteristics to the requirements of the partic
application at hand. Moreover, the available models, to
incorporated in the analysis of structural systems, req
incremental non-linear time domain analysis.

Linearisation often resultsin an accurate representatio
of the characteristics of many non-linear dynamic syste
The non-linear stiffness of the wire rope spring can
approximated by an effective spring constant that maint
the same natural frequency at a certain displacem
amplitude. The complicated energy dissipation mechanism
can be represented by an equivalent viscous dam
mechanism that, for a given amplitude, dissipates the s
amount of energy.

This paper describes a large set of dynamic t
that were conducted to quantify the amplitude-depen
effective stiffness and equivalent viscous damping r
of the wire rope springs in the tension–compress
mode of deformation. Twenty-four wire rope springs w
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tested in free vibration andthe displacement decays we
recorded. For each recorded displacement amplitude,
effective stiffness was determined from the observed pe
of vibration. The equivalent viscous damping ratio w
determined from thelogarithmic decrement of the velocit
between the points of zero potential energy.

Two mathematical models that describe the effectiv
stiffness and the equivalentviscous damping ratio, a
amplitude-dependent quantities, were developed. For e
wire rope spring, the effective stiffness values we
normalised by their minimumvalue and the displacemen
amplitude values were normalised by the amplitu
value corresponding to the minimum effective stiffnes
The normalisation process resulted in similar tren
for the stiffness–amplitude and the damping–amplitu
relationships for all the springs tested. The minimu
effective stiffness was related to the stiffness of a ring be
subjected to a point load and thecorresponding displacemen
amplitude was related to the dimensions of the wire ro
spring. The normalised effective stiffness was fitted w
two polynomials, which are functions of the normalis
displacement amplitude. On the basis of an understandin
of the actual energy dissipation mechanism, the equiva
viscous damping ratio was also described as a function of
the normalised displacement amplitude.

2. Experimental study

2.1. Wire rope springs

Twenty-four wire rope springs were fabricated for th
intended experimental study.Fig. 1 shows a schematic
drawing of a wire rope spring. The wire rope diameter,dr ,
and the coil diameter,Dc, were varied as listed inTable 1.
The wire rope structure is 6× 19 with an independent wire
ropecore (IWRC) for diameters 25.40 and 12.70 mm a
is 7 × 19 with a wire strand core (WSC) for diamete
7.938, 6.350 and 3.175 mm. To compare with other w
rope structures, one spring was made of a 7× 7 WSC wire
rope of 1.587 mm diameter. The ratioDc/dr was chosen to
be in the range of 10–25 (with one exception of 33) as lis
in Table 1. The spring was intended to be two half-circles o
both sides of the aluminium retainers. However, after being
fabricated, it took a near elliptical shape with the major ax
Dc1, as thedistance between the tworetainers and the minor
axis, Dc2, perpendicular to the retainers (seeTable 1). Dc

wascalculated as the average ofDc1 andDc2. Fig. 2 shows
some of the springs used in this study.

2.2. Test set-up and procedures

Each wire rope spring was placed between a mov
pendulum and a reaction column as shown inFig. 3. The
pendulum was pushed manually for several cycles to b
up motion and then was released to vibrate freely. T
displacements,x , at the wirerope spring attachment poin
Fig. 1. A Schematic drawing of a wire rope spring.

Fig. 2. A photograph of some of the wire rope springs tested.

Fig. 3. A photograph of the pendulum set-up.

were recorded. A typical filtered displacement,x , time
history is shown inFig. 4.
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Table 1
Dimensions and properties of wire rope springs
he
lum
een
the
ue
ed
Fig. 4. A typical displacement time history.
2.3. Pendulum rotational stiffness

The rotational stiffness of the pendulum,kθ
p, for small

rotations, is

kθ
p = m pagz (1)

wherem p is the mass of the pendulum,ag is the acceleration
due to gravity andz is the distance between the pivot and t
pendulum centre of mass. The spring stiffness to pendu
stiffness ratio was chosen to maintain a balance betw
two sources of error. These were errors associated with
calculation of the wire rope spring stiffness and errors d
to interpolation of stiffness and damping between record
amplitudes.

3. Analysis procedures

3.1. Representative amplitude, Xr

Since the force–displacement relationship is asymmetri-
cal as shown inFig. 5, thefree vibration tension amplitude,
XT , and compression amplitude,XC , differ considerably
within the same vibration cycle as shown inFig. 4. A rep-
resentative amplitude,Xr , waschosen as

Xr = √
XT XC . (2)
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Fig. 5. A typical force–displacement relationship for th
tension–compression mode of deformation.

3.2. Amplitude-dependent effective stiffness, kwr

The damped periods of the vibration,TD, wereobtained
from the free vibration time history (seeFig. 4). The
effective stiffness, kwr, corresponding to a particula
representative displacement amplitude,Xr , was determined
to produce the same natural frequency as the non-lin
spring. This equivalence criterion was adopted beca
the natural frequency of the tuned mass damper stron
influences its effectiveness.

The calculation procedures, for eachXr , are asfollows:

1. The circular natural damped frequency of the rotatio
single-degree-of-freedom, SDOF, system is given by

ωD = 2π

TD
. (3)

2. The total rotational stiffness of the SDOF system is giv
by

kθ
t = ω2

D Ip

(1 − β2)
(4)

whereIp is the mass moment of inertia of the pendulu
about the pivot andβ is the equivalentviscous damping
ratio of the SDOF system evaluated in the next sectio

3. The spring rotational stiffness is given by

kθ
wr = kθ

t − kθ
p (5)

4. The tension–compression stiffness per coil of the w
rope spring is given by

kwr = kθ
wr

nch2
(6)

wherenc is the number of coils.

3.3. Amplitude-dependent equivalent viscous damping
ratio, βwr

Damping in structures is usually represented by
equivalent viscous damping. It is the simplest form
r

damping to use since the governing differential equation of
motion is linear. The commonest method for defining
equivalent viscous damping is equating the energy dissip
over a vibration cycle by the actual damping mechanism to
that dissipated by a viscous damping mechanism [14].

The energy dissipated in a free vibration cycle by
rotational SDOF with viscous damping is given by

EfV
D = 2Ipωnβ

∫ 2π
ωD

0
θ̇ (t)2 dt (7)

where the rotation is described by

θ(t) = exp(−βωnt)

(
Cθ1 cos

(
ωn

√
1 − β2t

)

+ Cθ2 sin

(
ωn

√
1 − β2t

))
(8)

and the rotational velocity is

θ̇ (t) = dθ(t)

dt
. (9)

The initial conditions are defined as

θ(0) = 0 (10a)

and

θ̇ (0) = θ̇0. (10b)

The initial conditions are used to determine the consta
Cθ1 and Cθ2 in Eq. (8). An expression for the dissipate
energy per cycle in free vibration for a viscously damp
SDOF was obtained by performing the integral in Eq. (7)
and is given by

EfV
D = 1

2
Ip θ̇

2
0

(
1 − exp

(
−4πβ√
1 − β2

))
. (11)

Regardlessof the actual damping mechanism, the ene
dissipation between points of zero potential energy can
expressed in terms of the change in the kinetic energy as

E f
D = 1

2
Ip

(
θ̇2

0 − θ̇2
1

)
. (12)

By equating EfV
D to E f

D, an expression for the equivalen
viscous damping ratio is obtained as

β =
δ

2π√
1 + (

δ
2π

)2 (13a)

where

δ = ln

(
θ̇0

θ̇1

)
. (13b)

For a spring, which has a hysteretic force–displaceme
relationship, zero displacement corresponds to a value fo
the force (seeFig. 5) and therefore there is some potentia
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energy stored in the spring. The zero-potential-ene
condition is satisfied only at points of zero acceleration. T
displacement time history wasnumerically differentiated
twice to determine points of zero acceleration. Velocit
corresponding to zero accelerationsθ̇0 and θ̇1 were used
in Eq. (13) to obtain the equivalent viscous damping rat
Since the pendulum motion was recorded in terms
displacement at the spring level, the rotational velocity,θ̇ , for
small rotations, can be related to the translational velocityẋ ,
by

θ̇ ∼= ẋ

h
. (14)

The only component that dissipates a significant amo
of energy in the rotational SDOF system is the wire rope
spring. The equivalent viscous damping ratio, calcula
according to the above-mentioned procedures, should
corrected for the ratio of the total system stiffness to
spring stiffness. The energy dissipated by a rotational SD
system with viscousdamping in one cycle of harmoni
vibration is

EhV
D = 2πβ

ω

ωn
kθ

t Θ2 (15)

whereω is thefrequency of response andΘ is the amplitude
of rotation. Since the response of a system is most sens
to damping when vibrating at its natural frequency, t
damping equivalence point is always chosen atω = ωn . If
the stiffness is providedonly by the wire rope spring,kθ

wr,
then the corresponding equivalent viscous damping ra
βwr, is given by

βwr = kθ
t

kθ
wr

β. (16)

3.4. Dynamic properties based on the half-cycle

Considering tension and compression separately, t
half-cycle period isTDT or TDC and the corresponding
amplitude isXT or XC , respectively, as shown inFig. 4. The
velocities θ̇0 and θ̇1 are calculated for the half-cycle unde
consideration. To carry out the analysis for the half-cycl
Eq. (3) is replaced by

ωD = 2π

2 TDT
(17a)

for the tension half-cycle or

ωD = 2π

2 TDC
(17b)

for the compression half-cycle. Also, Eq. (13b) should be
replaced by

δ = 2 loge

(
θ̇0

θ̇1

)
. (18)
4. Experimental results and modelling

4.1. Effective stiffness, kwr

4.1.1. Typical stiffness–amplitude relationship
A typical effective stiffness based on full vibration cycle

versus the representative amplitude,Xr , is shown inFig. 6.
It also shows the effective stiffness based on tension
compression half-cycles. For the stiffness based on
cycles, it decreases rapidly with the increase ofXr up to
a certain point where it reaches its minimum value,kmin

at amplitudeXmin
r , after whichkwr slightly increases with

the increase ofXr . The rapid decrease ofkwr with Xr

increase could be attributed to the increase of slip betw
individual wires, therefore reducing the wire rope’s effecti
moment of inertia. In the small amplitude range, the no
linear geometric effects do not play a noticeable role a
hence the effective stiffnesses based on full cycles, ten
half-cycles and compression half-cycles are all equal. T
agrees with the recorded symmetric hysteresis loops un
small amplitudes (seeFig. 5). As the amplitude increases
stiffening takes place on the tension side while softening
experienced on the compression side. The full cycle effec
stiffness represents the average.

4.1.2. Minimum effective stiffness, kmin, and corresponding
amplitude, Xmin

r
The minimum value for the effective stiffness based

the full vibration cycle,kmin, and the corresponding repre
sentative amplitude, Xmin

r , wereobtained from experimenta
results for all the 24 springs and are listed inTable 1.

On the basis of the energy method and considering
only the bending deformations, an expression for
tension–compression stiffness of a ring beam subject t
point load was obtained as [15]

kr = E Ix x

D3
c

8(
π
4 − 2

π

) (19)

where Ix x is the cross section moment of inertia about th
axis of bending andE is the modulus of elasticity. Three
different values were assigned toIx x , based on: a no-slip
condition; partial slip between strands but no-slip betwe
individual wires within the same strand; and a full sl
condition. The corresponding stiffness values werekns, k ps

and kfs, respectively. kns, k ps and kfs were normalised by
kmin and are given inTable 1. The ratioskfs/kmin for springs
1–23 are all in the near vicinity of unity which suggests th
kmin can be accurately predicted using Eq. (19) with a full
slip condition considered in calculatingIx x .

To predict the representative displacement amplitu
corresponding tokmin, an empirical expression in the form

Xmin
r = 0.086

D1.24
c

d0.24
r

(20)

best fits the experimentally obtainedXmin
r values (see

Table 1).
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Fig. 6. A typical normalised effective stiffness versus normalised
displacement amplitude.

Fig. 7. Normalised effective stiffness versus normalised displacem
amplitude for all springs.

4.1.3. General expression for the amplitude-dependent
effective stiffness, kwr(Xr )

For each spring, the effective stiffness values,kwr, and
the representative amplitude values,Xr , werenormalised by
kmin andXmin

r , respectively. The normalisation process w
repeated for the 24 springs and normalised values are pl
in Fig. 7. A general expression for the amplitude-depend
effective stiffness was obtained, through fitting, as

kwr(Xr ) = kmin

(
1 + 0.95

(
1 − Xr

Xmin
r

)4
)

for Xr ≤ Xmin
r (21a)

and

kwr(Xr ) = kmin

(
1 + 0.14

(
Xr

Xmin
r

− 1

)1.5
)

for Xr > Xmin
r (21b)

and is plotted inFig. 7.
d

Fig. 8. A typical normalised energy dissipation versus normali
displacement amplitude.

4.2. Equivalent viscous damping ratio, βwr

4.2.1. Damping mechanisms
To identify the energy dissipation mechanism, a typic

energy dissipation/amplitude relationship is plotted inFig. 8.
The energy dissipated is normalised by the maximum st
energy that can be stored in the wire rope spring, wh
is

Emax
S = 1

2

{
kwr

(
2Xmin

r

)}
2Xmin

r . (22)

The relationship between the energy dissipation and
amplitude suggested a fit in the form

E f
D = CED1Xr + CED2X2

r , (23)

which represents the combination of two mechanisms. Th
term proportional to the amplitude represents a frict
damping mechanism as shown inFig. 9(a). The term
proportional to the amplitude squared represents a rat
independent linear damping [14,16] in which the damping
force is proportional to displacement as shown inFig. 9(b).
η is a dimensionless damping constant. A condition
achieving slip is

kwr (Xr ) Xr ≥ F f + πηkwr Xr

2
(24)

and was considered in fitting the dissipated energy w
Eq. (23).

4.2.2. General expression for the amplitude-dependent
damping ratio, βwr(Xr )

The equivalent viscous damping ratio values,βwr,
were plotted versus the normalised displacement ampli
values, Xr/Xmin

r , for the 24 springs and are shown in
Fig. 10. The relationship between the viscous damping ra
equivalent to the combined damping mechanism and
amplitude needs to be described. When the energy dissip
by a viscous damping mechanism under harmonic excita
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Fig. 9. Combined damping mechanism of wire rope springs.
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Fig. 10. Equivalent viscous damping ratio versus normalised displacem
amplitude for all springs.

is equated to that dissipated by both the friction and linea
damping mechanisms as

2πβwr
ω

ωn
kwr X2

r = 4F f Xr + πηkwr X2
r , (25)

a relationship betweenβwr andXr , for ω = ωn , is obtained
as

βwr (Xr ) = 2

π

F f

kwr Xr
+ η

2
. (26)

By fitting the expression given by Eq. (26) and fulfilling
the slip condition given by Eq. (24), values for the non-
dimensional parametersF f /(kminXmin

r ) andη are obtained
as 0.0776 and 0.0627, respectively, and the fitted expres
is shown inFig. 10. As Xr increases, the contribution of th
friction damping toβwr decreases. For largeXr values,βwr

approaches a value ofη/2 (seeFig. 10).

4.3. Applicability to other wire rope structures

The effective stiffness and equivalent viscous damp
ratio expressions were developed on the basis of spr
having wire rope structures of 7×19 WRS or 6×19IWRC.
t

n

s

The spring made of wire rope structure 7× 7 is shown to
match the trend of the above-mentioned data (seeFigs. 7and
10). However, discrepancies are observed between meas
and predictedXmin

r andkmin for the 7× 7 spring. Further
testing is required to check the applicability of the mode
developed to other wire rope structures.

5. Conclusions

The effective stiffness decreases as the vibratio
amplitude increases up to its minimum value, beyo
which the stiffness slightly increases with the amplitud
The minimum stiffness value was found to be equ
to the stiffness of a ring beam having the same co
diameter and a cross section moment of inertia equiva
to full slip between the wires. The displacement amplitu
corresponding to the minimum effective stiffness w
empirically expressed as a function of the coil diame
and a weak function of the wire rope diameter. T
stiffness–amplitude relationship was found by fitting th
normalised data points.

The energy dissipation/amplitude relationship show
that the damping mechanism is a combination of a fricti
damping and a rate-independent linear damping. Equa
the energy dissipated by the combined mechanism
that dissipated by viscous damping, an expression for
equivalent viscous damping ratio as a function of t
displacement amplitude was developed. This expression
fitted to thedamping-amplitude relationship.
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Appendix. Notation

List of symbols

ag acceleration due to gravity
CED1,2 fitting constants for amplitude-dependent dis

pated energy
Cθ1,2 constants in the expression for free vibrati

rotation of the SDOF system
Dc coil diameter
dr wire rope diameter
E modulus of elasticity
ED dissipated energy per vibration cycle

E f
D dissipated energy perfree vibration cycle

EfV
D energy dissipated per free vibration cycle

viscous damping
EhV

D energy dissipated per harmonic vibration cycle
viscous damping

Emax
S maximum strain energy stored in the wire ro

spring
F f friction force
Fr springrestoring force
h distance between the spring/damper (or wire ro

spring) attachment point and pivot point
Ip pendulum mass moment of inertia about the piv

point
Ix x cross section moment of inertia about the axis

bending
kfs stif fness of the ring beam under a point load, bas

ona full slip condition
kmin minimum effective stiffness of a wire rope spring
kns stif fness of the ring beam under a point load, bas

onnoslip condition
k ps stif fness of the ring beam under a point load, bas

ona partial slip condition
kr stif fness of the ring beam under a point load
kwr effective stiffness of the wire rope spring
kθ

p pendulum rotational stiffness

kθ
t total rotational stiffness

kθ
wr effective wire rope spring rotational stiffness

m p pendulum mass
nc number of coils
TD damped natural period of vibration, based on a ful

cycle
TDC half of the damped natural period of vibratio

based on a compression half-cycle
TDT half of the damped natural period of vibratio

based on a tension half-cycle
t time
XC displacement amplitude in compression
Xr representative displacement amplitude
XT displacement amplitude in tension
Xmin

r representative displacement amplitude correspo
ing to minimum wire rope spring stiffness
-

x displacement
β damping ratio (% of critical)
βwr equivalent damping ratio of wire rope spring (%

critical)
η dimensionless damping constant
Θ rotation amplitude
θ rotation
ω circular frequency
ωD natural damped circular frequency of rotation

SDOF
ωn natural circular frequency

Operators

• Differential with respect to time.

Abbreviations

IWRC independent wire rope core
SDOF single-degree of freedom
WSC wire strand core
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