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Abstract

A weighted-average technique to calculate the response of a structure equipped with a wire rope spring tuned mass damper, TMD, is
presented. The probability distribution of structure-TMD relative displacement envelope is assumed to be of the Rayleigh-type and is used
as a weighting function in averaging the amplitude-dependent response. The method is verified by comparing the calculated response with
the measurements obtained from the experiments. Further, design charts are developed for structures subject to a white noise random force.
The charts are in the form of contour plots for the equivalent viscous damping ratio, provided by the TMD, and the ratio of root-mean-square
(RMS) relative displacement to RMS primary system displacement. The use of the design charts is demonstrated by a design example.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

A general dynamic characterisation of wire rope springs
was achieved in terms of amplitude-dependent effective
stiffness and equivalent viscous damping as discussed in part
I. When the amplitude-dependent stiffness and damping are
substituted into the equations of motion of a two-degree of
freedom system, TDOF, representing a structure equipped
with a tuned mass damper (TMD) as shown in Fig. 1, the
resulting response is dependent on the relative displacement
amplitude.
Natural loads such as wind and earthquakes are

excitations that cover a range of amplitudes and frequencies
and hence the TDOF system response also contains a
range of amplitudes. If the probability distribution of the
structure-TMD relative displacement envelope is defined,
it can be used as a weighting function in averaging
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the amplitude-dependent response. Through an iterative
process the response of the non-linear TDOF system can
be predicted, using the frequency-domain analysis, for a
given excitation spectrum. To verify the prediction method,
calculated responses are compared with experimental results
described elsewhere [1,2].
Design charts for pendulum-type TMD’s are developed.

The random force applied to the primary structure is
assumed to have a white noise spectrum. A contour plot for
the equivalent viscous damping ratio, provided by the TMD,
is presented and can be used to predict the primary system
response. Additionally, a contour plot for the ratio of root-
mean-square, RMS, relative displacement to RMS primary
system displacement is provided, which allows the relative
structure-TMD displacement to be predicted. Both the
equivalent viscous damping ratio and the RMS displacement
ratio are functions of the mass ratio, of auxiliary to primary
system, and the normalised RMS relative displacement.
The use of the design charts is demonstrated by an
example.
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Fig. 1. Single-degree of freedom system equipped with wire rope spring pendulum-type TMD and subjected to base acceleration.

2. Response predictions

2.1. Frequency response functions

Expressions for the complex frequency response func-
tions Hx and Hθ were derived by Gerges [1] and are given
in Appendix A. x is the primary system displacement and
θ is the auxiliary system rotation (see Fig. 1). Both Hx and
Hθ are dimensionless and are described in terms of the non-
dimensional parameters ra , fr , β, βa , μ and g. μ is the mass
ratio (μ = ma/M) and ra = Ia/maz2; Ia is the mass mo-
ment of inertia of the auxiliary system about the pivot,ma is
the auxiliarymass and z is the distance between the pivot and
the auxiliary system centre of mass (see Fig. 1). fr is the fre-
quency ratio between the auxiliary system and the primary
system (ωa/ωn), β is the damping ratio of the primary sys-
tem, βa is the damping ratio of the auxiliary system and g
is the frequency normalised by the natural frequency of the
primary system (ω/ωn). Both fr and βa are dependent on
the relative displacement amplitude, Xr , and consequently
Hx and Hθ are dependent on Xr .

2.2. Probability distributions of excitation and response

Typical, experimentally obtained, probability distribu-
tions for the base acceleration excitation, ẍg , the primary
system displacement, x , and the auxiliary system rotation, θ ,
are shown in Fig. 2. Both the excitation ẍg and the response
x have Gaussian probability distributions. This indicates that
the structure maintains a near linear response despite the at-
tachment of a non-linear TMD. θ has a peaked probability
compared to the Gaussian distribution. The larger the re-
sponse, the less peaked the distribution becomes, which is
due to a less pronounced effect of the stick–slip behaviour.
For design purposes, only large amplitudes are of impor-
tance, which may be approximated by a Gaussian distribu-
tion. For a narrow-band Gaussian process with zero mean,
Crandell and Mark [3] showed that the probability den-
sity function, PDF, of the envelope follows the well known
Rayleigh distribution.

2.3. Averaging technique

The response of a linear TDOF system subjected to a
random base acceleration, ẍg , can be obtained, for small θ ,

based on the random vibration theory as

x̃2 = 1
ω3n

∫ ∞

0
Sẍg (g)|Hx(ig)|2 dg (1)

and

x̃2r =
(
h
z

)2 1
ω3n

∫ ∞

0
Sẍg (g)|Hθ(ig)|2 dg (2)

where x̃ and x̃r are the RMS primary system displacement
and the RMS relative displacement at the spring attachment
location, respectively, for an excitation with a zero mean.
Sẍg (g) is the spectral density of the base acceleration and h
is the distance between the pivot and the spring attachment
point (see Fig. 1).
For a linear structure equipped with a wire rope spring

TMD, both Hx and Hθ are amplitude-dependent. Since Xr
was assumed to take the Rayleigh distribution form, its PDF,
p(Xr , x̃r ), is used as a weighting function to average the
response over a range of amplitudes as follows

x̃2 = 1
ω3n

∫ x Lr

0

∫ ∞

0
Sẍg (g)|Hx(ig, Xr )|2

× p(Xr , x̃r ) dg dXr (3)

and

x̃2r =
(
h
z

)2 1
ω3n

∫ x Lr

0

∫ ∞

0
Sẍg (g)|Hθ(ig, Xr )|2

× p(Xr , xr ) dg dXr (4)

where x Lr is the limiting relative displacement.

3. Comparison with experimental results

3.1. Frequency response functions

If Sẍg (g) is considered to be constant in Eqs. (3) and (4)
and since the double integral is interchangeable, averaged
frequency response functions are obtained as

|Hx(ig, x̃r )| =
√∫ x Lr

0
|Hx(ig, Xr )|2 p(Xr , x̃r ) dXr (5)

and

|Hθ (ig, x̃r )| =
√∫ x Lr

0
|Hθ(ig, Xr )|2 p(Xr , x̃r ) dXr (6)
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Fig. 2. Typical probability distributions for base acceleration, primary system displacement and auxiliary system rotation.

for the primary system displacement and the auxiliary
system rotation, respectively.
The averaged frequency response functions are com-

parable to the experimentally obtained ones for the same
x̃r value. Fig. 3 shows 3-D plots for the frequency re-
sponse functions for two different mass ratios and employ-
ing “spring #1”, the dimensions and properties of which are
given in part I. Each of the 3-D plots describes the frequency
response as a function of both the normalised RMS relative
displacement, x̃r/Xminr , and the forcing ratio, g. Xminr is the
relative displacement amplitude corresponding to minimum
effective stiffness, kmin, of a particular wire rope spring as
discussed in part I. An interesting feature that can be ob-
served is the lesser dependence of the frequency response
functions on the relative displacement beyond x̃r/Xminr ≈
0.4. This observation is of great importance to designers
since uncertainties exist in estimating the excitation level. It
also agrees with the findings of the parametric experimental
study [1,2].
Experimentally obtained frequency response functions

are plotted in Fig. 3 together with line plots, following the
predicted surface, at the specific x̃r/Xminr values. In general,
the predicted values are in a good agreement with the
experiments. For μ = 0.116, conservative predictions are
observed for the largest two x̃r/Xminr values (see Fig. 3(a),
(b)) and are attributed to the extra energy dissipated by the

visco-elastic stop while impact was assumed to be perfectly
elastic in the prediction process. For μ = 0.0345, a good
agreement for |Hx(ig, x̃r )| values is seen while conservative
predictions are obtained for |Hθ(ig, x̃r )| (see Fig. 3(c), (d)).
3.2. RMS response

Since x̃r appears on both sides of Eq. (4), iterations are
required to evaluate x̃r and then it can be directly substituted
into Eq. (3) to evaluate x̃ . The double integral was evaluated
numerically using the trapezoidal rule. Ratios of predicted
to measured x̃ and x̃r are shown in Table 1. Among the
sixty-four cases listed, there are only two cases where x̃
was underestimated and for all the others predictions were
conservative. For x̃r ratios, reasonable fluctuations about
unity are observed.
For a general evaluation of the proposed prediction

method, statistics of predicted to measured response ratios
are given in Table 2. Four categories were considered as a
combination of “Heavy” for μ � 0.116, “Light” for μ �
0.035, “Single” for single wire rope spring on one side of the
pendulum and “Double” for two springs on both sides of the
pendulum [1,2]. For a 95% confidence level and considering
all experimental results, ratios for x̃ lie between 1.224 and
0.968 and range from 1.237 to 0.761 for x̃r ratios. Fig. 4
shows the variation of x̃ and x̃r ratios versus x̃r/Xminr . The
overestimation of x̃ is increasing as x̃r/Xminr increases since
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Table 1
Comparison between predicted and measured response under different arrangements and excitations

Experimental parameters Ratio of predicted to measured

μ ra z h kopt
kmin

xLr
Xminr

Impact x̃r
Xminr

x̃ x̃r PFx PFx PFr PFr PFr a PFr a

ratio ratio mm mm (1 h) (6 min) (1 h) (6 min) (1 h) (6 min)

(a) Spring # 1
0.116 1.095 1154 994.8 1.046 1.877 No 0.1377 1.060 1.049 1.113 1.036 0.517 0.531 0.951 0.977

1.901 No 0.3571 1.181 0.986 1.084 1.015 0.822 0.759 0.958 0.884
1.931 Yes 0.5253 1.170 1.008 1.074 1.016 0.984 0.989 – –
2.000 Yes 0.6919 1.205 1.045 1.074 0.976 0.911 0.914 – –

0.116 1.097 1150 930.3 1.185 1.657 No 0.1524 1.098 0.949 1.077 1.004 0.538 0.566 0.954 1.003
1.657 No 0.3175 1.148 0.977 1.056 0.986 0.835 0.757 1.031 0.935
1.662 Yes 0.4944 1.202 1.018 1.057 1.007 0.948 0.950 – –

0.116 1.099 1146 866.8 1.360 1.657 No 0.1700 1.118 0.896 1.051 0.985 0.609 0.641 1.033 1.088
1.670 No 0.3120 1.127 0.934 1.042 0.976 0.815 0.755 1.016 0.941
1.668 Yes 0.4829 1.207 0.986 1.033 1.003 0.994 0.996 – –
1.706 Yes 0.4863 1.206 0.983 1.041 1.002 0.981 0.983 – –

0.0345 1.479 582 333.4 1.150 1.566 No 0.0988 1.026 1.064 1.057 0.991 0.501 0.470 1.018 0.955
1.609 No 0.1892 1.050 0.970 1.056 0.984 0.601 0.563 0.973 0.911
1.610 No 0.3221 1.077 0.917 1.039 0.963 1.019 0.922 1.249 1.130

0.0345 1.500 576 304.8 1.365 1.567 No 0.1017 1.029 1.029 1.059 0.987 0.512 0.510 1.033 1.029
1.567 No 0.1926 1.060 0.952 1.060 0.982 0.570 0.567 0.915 0.910
1.599 No 0.3020 1.088 0.934 1.053 0.976 0.820 0.727 1.040 0.922

0.0345 1.519 570 279.4 1.615 1.567 No 0.1093 1.039 0.984 1.057 0.991 0.543 0.552 1.074 1.092
1.567 No 0.2020 1.062 0.867 1.055 0.982 0.627 0.619 0.984 0.972
1.610 No 0.3040 1.072 0.838 1.043 0.974 0.817 0.741 1.033 0.937

(b) Springs # 2a and 2b

0.117 1.084 1162 993.8 0.945 1.753 No 0.119 1.043 1.075 1.098 1.037 0.529 0.574 1.021 1.108
1.753 No 0.281 1.125 1.082 1.125 1.027 0.795 0.746 1.049 0.985
1.923 No 0.497 1.166 1.033 1.133 1.020 0.974 1.013 – –
2.301 Yes 0.700 1.194 1.039 1.109 0.991 1.008 1.078 – –

0.117 1.087 1157 930.3 1.071 1.753 No 0.156 1.138 0.910 1.094 1.025 0.608 0.637 1.068 1.119
1.753 No 0.317 1.177 0.972 1.085 1.006 0.884 0.838 1.093 1.036

(c) Spring #3

0.116 1.080 1169 993.8 1.020 1.497 No 0.143 1.011 1.165 1.109 1.045 0.443 0.472 0.804 0.857
1.571 No 0.266 1.078 1.114 1.118 1.027 0.739 0.659 1.005 0.896
1.530 Yes 0.415 1.126 1.078 1.086 1.019 0.924 0.927 – –
1.575 Yes 0.475 1.142 1.071 1.043 0.989 0.907 0.912 – –

0.116 1.140 1164 930.3 1.130 1.497 No 0.072 1.015 1.072 1.107 1.039 0.445 0.468 0.969 1.020
1.497 No 0.170 1.095 0.938 1.097 1.020 0.502 0.512 0.852 0.869
1.600 Yes 0.300 1.153 0.943 1.076 0.999 0.818 0.720 1.042 0.917
1.603 Yes 0.445 1.211 0.970 1.114 1.034 1.201 1.011 – –

0.116 1.084 1159 866.8 1.324 1.572 No 0.081 1.035 1.014 1.099 1.034 0.461 0.478 0.981 1.017
1.572 No 0.188 1.115 0.891 1.084 1.005 0.554 0.569 0.899 0.924
1.608 Yes 0.314 1.137 0.898 1.062 0.990 0.847 0.747 1.052 0.928
1.628 Yes 0.451 1.178 0.932 1.100 1.022 1.041 1.048 – –

0.0341 1.417 601 333.4 1.123 1.572 No 0.092 1.032 1.072 1.065 0.990 0.462 0.423 0.956 0.875
1.572 No 0.083 1.028 1.184 1.063 0.989 0.457 0.421 0.968 0.891

0.0341 1.440 594 304.8 1.330 1.572 No 0.148 1.046 0.881 1.042 0.966 0.677 0.618 1.214 1.108

0.0341 1.461 587 279.4 1.573 1.572 No 0.104 1.051 0.906 1.062 0.987 0.502 0.508 1.007 1.019
1.572 No 0.150 1.059 0.777 0.956 0.966 0.473 0.539 0.844 0.961
1.572 No 0.159 1.061 0.840 1.046 0.971 0.520 0.529 0.907 0.922

(d) Springs # 4a and 4b

0.117 1.084 1162 993.8 0.999 1.467 No 0.055 0.978 1.296 1.078 1.036 0.348 0.438 0.792 0.997
1.467 No 0.109 0.987 1.303 1.086 1.036 0.439 0.473 0.869 0.937

(continued on next page)
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Table 1 (continued)

Experimental parameters Ratio of predicted to measured

μ ra z h kopt
kmin

xLr
Xminr

Impact x̃r
Xminr

x̃ x̃r PFx PFx PFr PFr PFr a PFr a

ratio ratio mm mm (1 h) (6 min) (1 h) (6 min) (1 h) (6 min)

1.467 No 0.216 1.049 1.247 1.107 1.028 0.657 0.619 0.998 0.940
1.776 Yes 0.371 1.122 1.143 1.106 1.020 0.883 0.875 – –

0.117 1.087 1157 930.3 1.130 1.467 No 0.073 1.008 1.086 1.107 1.043 0.462 0.506 1.004 1.100
1.467 No 0.148 1.057 1.028 1.106 1.029 0.557 0.568 0.998 1.018
1.557 No 0.265 1.120 1.049 1.110 1.024 0.752 0.715 1.025 0.975
1.803 Yes 0.406 1.174 1.040 1.102 1.017 0.974 0.945 – –

0.117 1.089 1152 866.8 1.297 1.540 No 0.094 1.096 0.854 1.086 1.020 0.537 0.568 1.105 1.169
1.540 No 0.178 1.125 0.880 1.090 1.012 0.664 0.670 1.105 1.115
1.605 No 0.292 1.158 0.924 1.096 1.014 0.805 0.784 1.040 1.013
1.784 No 0.418 1.192 0.950 1.085 1.009 1.054 0.966 1.162 1.065
1.972 Yes 0.426 1.183 0.933 1.085 1.007 0.975 0.958 1.071 1.052

0.0354 1.442 586 333.4 1.101 1.540 No 0.087 1.033 1.101 1.039 0.982 0.462 0.446 0.968 0.935
1.540 No 0.117 1.035 0.986 1.032 0.965 0.560 0.512 1.086 0.993

0.0354 1.466 578 304.8 1.305 1.513 No 0.043 1.025 1.351 1.058 0.994 0.430 0.412 1.010 0.967
1.513 No 0.086 1.036 1.030 1.054 0.987 0.519 0.499 1.091 1.048
1.513 No 0.133 1.049 0.901 1.010 0.965 0.680 0.624 1.266 1.162

0.0354 1.489 572 279.4 1.540 1.513 No 0.091 1.047 0.997 1.062 0.985 0.555 0.540 1.151 1.120
1.513 No 0.137 1.069 0.735 0.903 1.055 0.578 0.703 1.065 1.296
1.513 No 0.150 1.059 0.850 1.048 0.977 0.635 0.620 1.133 1.106

Underlined values are governed by stop location.
a Corrected peak factors.

(a) Primary system displacement for mass ratio of 0.116 tuned at 1.046kmin.

Fig. 3. 3-D plots of frequency response functions for spring # 1.
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(b) Auxiliary system rotation for mass ratio of 0.116 tuned at 1.046kmin.

Fig. 3. (continued).

Table 2
Statistics of predicted to measured ratios

Data sets x̃ x̃r PFx (1 h) PFx (6 min) PFr a (1 h) PFr a (6 min)
mean SD mean SD mean SD mean SD mean SD mean SD

Heavy-single 1.131 0.062 0.996 0.072 1.078 0.026 1.010 0.020 0.968 0.074 0.947 0.066
Heavy-double 1.110 0.070 1.044 0.131 1.099 0.014 1.021 0.013 1.027 0.093 1.042 0.070
Light-single 1.052 0.019 0.948 0.107 1.048 0.027 0.980 0.010 1.014 0.106 0.976 0.082
Light-double 1.044 0.015 0.994 0.184 1.026 0.052 0.989 0.029 1.096 0.091 1.078 0.118
All 1.096 0.064 0.999 0.119 1.071 0.037 1.004 0.024 1.018 0.098 1.003 0.093
a Corrected peak factors.

impact is more frequent and therefore the energy dissipated
through the visco-elastic stop increases. The scatter of x̃r
ratios decreases with the increase of x̃r/Xminr to about half
in the range of 0.25 to 0.5 x̃r/Xminr , which is the practical
design range as explained in Section 3.3.

3.3. Peak factors

Peak values are of great importance for design of
structures vulnerable to brittle failure. For a random dynamic
response of a zero mean, the peak, R̂d , can be expressed as

R̂d = PF R̃d (7)

where PF is the peak factor and R̃d is the RMS dynamic
response. An expression presented by Davenport [4,5] to
calculate the peak factor for a Gaussian random process is
in the form

PF = √
2 loge( foT ) + 0.5772√

2loge( fo T )
(8)

where T is the duration of time over which the peak factor
is calculated and fo is the expected response frequency [3]
and is given by

fo = ωn

2π

√∫ ∞
0 g2SRd (g) dg∫ ∞
0 SRd (g) dg

(9)
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(c) Primary system displacement for mass ratio of 0.0345 tuned at 1.150kmin.

Fig. 3. (continued).

where SRd (g) is the spectrum of a particular dynamic
response.
The peak factor values for primary system displacement,

PFx , and auxiliary system relative displacement, PFr , were
evaluated numerically. Ratios of predicted to experimentally
obtained peak factors, for one hour and six minute
sampling times, are listed in Table 1. Predictions for
PFx are mostly conservative while PFr values are
considerably underestimated. The underestimation of PFr
is due to the stick–slip behaviour of the auxiliary system,
which resulted in a peaked response more pronounced
for small amplitudes. As the amplitude of the relative
displacement increases, the PDF of auxiliary system
response becomes less peaked approaching the Gaussian
assumption and therefore predictions improve. For a very
large relative displacement amplitude, PFr predictions were
governed by stop location and their values are underlined
in Table 1.
To account for deviations from the Gaussian assumption,

a correction factor is suggested. Ratios of measured to
predicted PFr are plotted versus x̃r/Xminr in Fig. 5. An
expression for the correction factor is obtained, based on a

least square fit, in the form

PCF = 7.291
(
x̃r
Xminr

)2
− 6.823

(
x̃r
Xminr

)
+ 2.622

for
x̃r
Xminr

< 0.47 (10a)

PCF = 1.09 for
x̃r
Xminr

≥ 0.47. (10b)

The corrected relative displacement peak factor is given by

PF∗
r = PCFPFr (11)

for which, values are listed in Table 1.
Since the peak factor for Gaussian excited linear

structures commonly ranges from 3.5 to 4.5 [5] and based on
the expression for PCF , provided by Eq. (10), estimations of
normalised peak relative displacement, x̂r/Xminr , are shown
in Fig. 6. For stop located at 1.5Xminr , x̃r/Xminr design range
is 0.22–0.37 depending on the natural frequency of the
structure. This range can be increased to 0.40–0.53 for stop
located at 2.0Xminr . One can conclude that for most of the
practical situations, x̃r/Xminr design values lie in between
0.22–0.53.
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(d) Auxiliary system rotation for mass ratio of 0.0345 tuned at 1.150kmin.

Fig. 3. (continued).

Statistics of predicted to measured peak factor ratios
are given in Table 2. Mean values in the near vicinity
of unity are observed for both PFx and PF∗

r including
all categories. Little scatter is seen for PFx and slightly
larger scatter is seen in the case of PF∗

r . The variation
of predicted to measured ratios with x̃r/Xminr is shown in
Fig. 7. Fortunately, scatter in PF∗

r reduces with the increase
of normalised x̃r values towards the design range.

4. Design method

4.1. TMD response parameters

Two non-dimensional parameters are fully representative
of the linear TMD system as reported by Vickery and
Davenport [6]. βe and R are the equivalent viscous
damping ratio provided by the TMD and the ratio of
RMS displacement of primary system to auxiliary system,
respectively. Closed form integral expressions for both βe
and R, for a structure excited by a white noise random force
were derived in terms of Hx and Hθ [6]. Expressions for Hx
and Hθ are given in Appendix A.

Following the proposed averaging technique, both
mechanical admittance functions, of primary and auxiliary
systems, are substituted by averaged ones. The average
equivalent viscous damping ratio, β̄e, and the average RMS
displacement ratio, R̄, are given by

β̄e(x̃r ) = π

4
∫ ∞
0 |Hx(ig, x̃r )|2 dg

(12)

and

R̄(x̃r ) =
√√√√∫ ∞

0 |Hθ (ig, xr )|2 dg∫ ∞
0 |Hx(ig, x̃r )|2 dg

(13)

where |Hx(ig, x̃r )| and |Hθ (ig, x̃r )| are given by Eqs. (5) and
(6), respectively.

4.2. Design parameters

The stop location is usually chosen in the range of
1.5–2.0Xminr , depending on coil diameter to rope diameter
ratio, and was conservatively taken as 1.5Xminr in this study.
Mathematically, this was expressed by setting x Lr = 1.5Xminr
in Eqs. (5) and (6). μ values ranging from 0.001 to 0.2 were
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(a) Primary system displacement.

(b) Relative displacement.

Fig. 4. Predicted to measured RMS response ratios vs. normalised RMS
relative displacement.

Fig. 5. Peak correction factor vs. normalised RMS relative displacement.

considered. ra was chosen as 1.15 to allow for a reasonably
stiff hanger.
The ratio of pendulum rotational stiffness, kθp , to the

minimum of that provided by wire rope spring, kminh2, was
chosen as 0.1. The increase of kθp/kminh2 ratio enables the

Fig. 6. Normalised peak relative displacement vs. normalised RMS relative
displacement.

(a) Primary system displacement.

(b) Relative displacement.

Fig. 7. Predicted to measured peak factor ratios vs. normalised RMS relative
displacement.

hanger length to be shortened. However, the small rotation
assumption has to be maintained. From a performance point
of view, increasing this ratio reduces the variation of the
frequency ratio, fr , about its optimum value, and therefore
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(a) Equivalent viscous damping ratio (% critical). (b) Root-mean-square response ratio.

Fig. 8. Contour plots for wire rope spring TMD response parameters.

increases the damping provided by the non-linear TMD.
On the other hand, increasing kθp/kminh2 ratio reduces the
overall auxiliary system damping, βa . Such a reduction in
βa shifts its value either away from or towards the optimum
value depending on the μ and x̃r/Xminr values chosen for a
particular design [1,2].

4.3. Design charts

Contour plots for the average equivalent viscous damping
ratio provided by the TMD, β̄e, and the average RMS
displacement ratio, R̄ are shown in Fig. 8. Both β̄e and R̄
are described as functions of μ and x̃r/Xminr .
The optimum value of fr for a linear system, expressed

as a function of μ, was derived [1] and is

f optr =

√
1+

(
1− 1

2ra

)
1+ μ

. (14)

The optimum tuning frequency for a TMD characterised by
a displacement-dependent stiffness, is only possible at some
chosen displacement amplitude(s). Three wire rope spring
stiffness values, kmin, 1.2kmin and 1.4kmin, corresponding
to different Xr values as discussed in part I, were
chosen for optimum tuning. This variation in displacement

amplitude, at which optimum frequency tuning is achieved,
is considered to find the maximum β̄e for a particular μ and
x̃r/Xminr combination. It is also useful in determining the
reduction in β̄e due to frequency-off-tuning.
Fig. 8 (a) shows that β̄e increases with the increase of

μ, which is similar to a linear system. For a certain μ

value, β̄e increases with the increase of x̃r/Xminr up to its
maximum value and then decreases. In other words, for each
combination of μ and tuning stiffness, there is an optimum
value for x̃r/Xminr at which β̄e is maximised. Since designers
get to choose a combination of μ and x̃r/Xminr values, the
tuning stiffness should be varied to maximise β̄e for this
particular design. The maximum value of β̄e corresponds
to a larger x̃r/Xminr as the tuning stiffness decreases. This
follows the same trend as the wire rope stiffness-amplitude
relationship shown in part I. Also, contour lines become
flatter as the tuning stiffness decreases since variations of
fr about its optimum value is less for a wider range of
amplitudes.
The average RMS displacement ratio, R̄, is shown in

Fig. 8(b). It is almost independent of μ for small x̃r/Xminr
values. As x̃r/Xminr increases, R̄ shows slight dependence
on μ and it becomes larger for smaller μ. For the largest
x̃r/Xminr value considered, R̄ value is comparable to that of
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an optimum linear system, for large μ values. However, it is
considerably smaller for small μ values.
Stick–slip behaviour was approximated by large stiffness

and no damping of the auxiliary system for small x̃r/Xminr
as discussed in part I and is well reflected in TMD response
parameters. As x̃r/Xminr approaches zero both β̄e and R̄ also
approach zero meaning that the auxiliary system sticks to
the primary structure with no reduction in the mechanical
admittance co-ordinate at the natural frequency.

5. Design example

5.1. Background

A sheeted framed tower with a height of 56 m and
a square cross-section with a side length, D, of 2.3 m
was observed to oscillate significantly in moderate winds.
Table 3 shows the main dynamic properties of the tower. It
is required to limit the maximum tip deflection to 200 mm to
meet ultimate limit state design criteria.

Table 3
Tower dynamic properties

Total mass of the tower 60,480 kg
Vibration mode to be controlled 1st sway mode in both directions
Natural frequency of vibration mode 0.67 Hz
Modal mass of the stack at top 16,200 kg
Maximum permissible tip deflection 200 mm

5.2. Tower aerodynamics

Preliminary calculations showed that the drag deflection
is about 20 mm. For an aspect ratio of 24, the Strouhal
Number is about 0.13 and hence the critical wind speed for
vortex shedding at 10 m height is about 35 km/h. Such a
wind speed lies within the design range of the tower specific
site. A conclusion was drawn that the severe motion is an
across-wind response phenomenon.
For the across wind response, at the vortex shedding

lock-in, a relationship between the RMS tip displacement,
x̃tip, and the inherent viscous damping ratio of the structure,
βstruct, was developed, in a non-dimensional form based on
Vickery and Steckley’s work [7], as

x̃tip
D

= 3.7× 10−3√
βstruct − 0.010 (15)

and conservatively assumed a Gaussian peak factor, which
is 4.1 for one hour wind event. To limit the peak tip
displacement to 200 mm, an added damping ratio of 3.5%
is required.

5.3. TMD design

A design point of x̃r/Xminr = 0.40 is chosen for which
the stop needs to be set at 1.8Xminr to achieve no impact.

Considering uncertainties in the applied force, the required
level of damping should be maintained for about ±20%
of the x̃r/Xminr design value. An auxiliary system tuned at
1.2kmin produces the largest β̄e, in the range of interest, and
corresponds to a μ value of 0.044. For this μ value and
x̃r/Xminr range, R̄ ranges from 2.3 to 2.7.
Two pendulum-type TMD’s are required, each for

a principal direction of motion. The properties of the
pendulum should be chosen to match the values for
ra and kθp/kminh2 ratios upon which the design charts
were based and to maintain small rotations. Wire rope
spring dimensions and attachment point were chosen
to accommodate the relative displacement with no stop
impact, produce the required auxiliary system frequency,
be reasonably distanced from the pivot to reduce secondary
displacement, as discussed in part I, and, again, maintain
kθp/kminh2 ratios upon which the design charts were based.
Properties of the pendulum and the wire rope spring are
shown in Table 4.

Table 4
TMD design parameters

Tuned 10% off tuned

Mass of the pendulum 713 kg 1102 kg
Distance between pendulum C. G.
and pivot

3 m 3 m

Ratio of mass moment of inertia
about pivot to that about C. G.

1.15 1.15

Distance between spring attach-
ment point and pivot

1.25 m 1.24 m

Number of coils 10 12
Coil diameter 780 mm 720 mm
Wire rope diameter 38.1 mm 38.1 mm
Stop location 250 mm 230 mm

Another design that allows 10% error in the frequency
ratio, fr , is also presented. Such a design employs a larger
μ value of 0.068. The 50% increase of the auxiliary system
mass, in some situations, is more economical than on-site
tuning, as required in the first design. To represent the off-
tuned case, the design is carried on for 1.2kmin, however, the
lowest β̄e values for 1.0kmin and 1.4kmin were considered.
On the other hand, the maximum R̄ ratio of 1.0kmin, 1.2kmin
and 1.4kmin was considered in the design.

6. Conclusions

An averaging technique is presented to predicted
structure-TMD response in the frequency-domain. The
technique employs the Rayleigh probability density function
to weight the relative-displacement-dependent response. The
predictions were found to be in a good agreement with
experimentally obtained response statistics.
A correction for the relative displacement peak factor

is presented in a form of a second order polynomial that
depends on the normalised RMS relative displacement.
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Table A.1(a)
Response parameters under base acceleration

HX (ig) = −g2 (−ra+μ−raμ)+ig(−2 fr raβa−2 fr raβaμ)+(− f 2r ra− f 2r raμ)

g4(ra−μ+raμ)−ig3(2raβ+2 fr raβa+2 fr raβaμ)−g2(ra+ f 2r ra+ f 2r raμ+4 fr raββa)+ig(2 f 2r raβ+2 fr raβa)+( f 2r ra )

Hθ (ig) = ig(−2 β)+(−1)
g4(ra−μ+raμ)−ig3(2raβ+2 fr raβa+2 fr raβaμ)−g2(ra+ f 2r ra+ f 2r raμ+4 fr raββa)+ig(2 f 2r raβ+2 fr raβa)+( f 2r ra )

Table A.1(b)
Response parameters under dynamic force

HX (ig) = −g2(ra )+ig(2 fr raβa)+( f 2r ra )
g4(ra−μ+raμ)−ig3(2raβ+2 fr raβa+2 fr raβaμ)−g2(ra+ f 2r ra+ f 2r raμ+4 fr raββa)+ig(2 f 2r raβ+2 fr raβa)+( f 2r ra )

Hθ (ig) = −g2(−1)
g4(ra−μ+raμ)−ig3(2raβ+2 fr raβa+2 fr raβaμ)−g2(ra+ f 2r ra+ f 2r raμ+4 fr raββa)+ig(2 f 2r raβ+2 fr raβa)+( f 2r ra )

The peak factors for the primary system displacement were
accurately predicted by the Gaussian peak factor expression.
This showed that the linear response of the primary system
is maintained despite the attachment of a non-linear tuned
mass damper.
Design charts were developed for wire rope spring tuned

mass dampers attached to a structure presentable by a single
degree of freedom system and subject to white noise random
force. Contour plots for the equivalent viscous damping ratio
and the RMS displacement ratios are provided. The charts
cover a wide range of mass ratios and a practical design
range for normalised RMS relative displacement. The use
of design charts was demonstrated by a design example.
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Appendix A

See Tables A.1(a) and A.1(b).

Appendix B. Notation

List of symbols

D side dimension of structure of square cross section
fo expected response frequency
fr frequency ratio
g forcing ratio
Hx complex frequency response function for primary

system displacement
Hθ complex frequency response function for auxiliary

system rotation

h distance between spring/damper (or wire rope
spring) attachment point and pivot point

Ia auxiliary system mass moment of inertia about the
pivot point

i
√−1

K particular vibration mode generalized stiffness
kmin minimum effective stiffness of wire rope spring
kθp pendulum rotational stiffness
M particular vibration mode generalized mass
ma auxiliary mass
PCF peak correction factor
PF peak factor
PFr peak factor of relative displacement
PFx peak factor of primary system displacement
PF∗

r corrected peak factor of relative displacement
p Rayleigh probability density function
R ratio of RMS relative displacement to primary

structure RMS displacement
Rd general dynamic response
ra ratio of mass moment of inertia about pivot to that

about center of mass
SRd spectrum of general dynamic response
Sx spectrum of primary system displacement
Sẍg spectrum of base acceleration
Sθ spectrum of auxiliary system rotation
T duration of time over which peak factor is

considered
Xr relative displacement amplitude
Xminr relative/representative displacement amplitude cor-

responding to minimum wire rope spring stiffness
x displacement
xr relative displacement between auxiliary and pri-

mary systems
xtip tip displacement
ẍg base acceleration excitation
z distance between auxiliary mass center and pivot

point
β damping ratio (% of critical)
βa damping ratio of auxiliary system (% of critical)
βe equivalent damping ratio of structure equippedwith

a TMD
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βstruct inherent structural damping ratio (% of critical)
μ mass ratio
θ rotation
ω circular frequency
ωa natural circular frequency of auxiliary system
ωn natural circular frequency of primary system

Operators

· differential with respect to time
_ average of quantity
∼ root-mean-square (RMS) of quantity
ˆ peak of quantity

Superscripts

L limiting displacement
opt parameters corresponding to maximum βe

Abbreviations

PDF probability density function
RMS root-mean-square

SDOF single-degree of freedom
TDOF two-degree of freedom
TMD tuned mass damper
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